

Experimental Section²³

(+)- α -Isomethadol Benzoyleformate Methiodide (5).—A mixture of (−)- α -isomethadol⁷ (0.79 g, 0.0016 mol) and 0.7 g of benzoyleformyl chloride in 20 ml of EtOAc was refluxed for 10 hr. The solvent was removed *in vacuo* to afford an oily residue which resisted attempts at crystallization. A cooled EtOAc solution (10 ml) containing 0.2 g of this oil was shaken with 0.2 g of Ag₂O for 15 min. Excess MeI was added to the filtrate and cooled overnight to yield 0.3 g (82%) of **5**, mp 198–200° dec, $[\alpha]_D +22.5^\circ$ (*c* 0.4, MeOH), after recrystallization (MeOH). *Anal.* (C₂₀H₃₆INO₃) C, H, N.

(+)- α -Isomethadol Benzoyleformate Methiodide and Methyl-magnesium Iodide.—A fivefold excess of MeMgI and 0.28 g (0.00048 mol) of finely powdered **5** was stirred under N₂ for 3 hr. The reaction mixture was decomposed with cold, saturated NH₄Cl solution and the solvent removed *in vacuo*. Inorganic salts were removed by dissolving the residue in MeCN and filtering. The MeCN was removed and the resultant brown oil

(23) All melting points were recorded using a Thomas-Hoover melting point apparatus and are corrected. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, N. Y. Routine ir spectra were recorded using a Perkin-Elmer 327B spectrophotometer, and high resolution ir spectra were obtained on a Perkin-Elmer 521 spectrophotometer. Optical rotations were obtained on a Perkin-Elmer 114 polarimeter with a 1-dm cell.

refluxed with 5% MeOH-KOH for 6 hr. The MeOH was removed, the residue taken up in H₂O and then extracted with EtOAc. The alkaline extract was acidified (HCl), extracted several times with EtOAc, and the solvent removed *in vacuo*. The resultant oil was extracted several times with aq NaHCO₃, acidified (HCl), extracted (EtOAc), and dried (MgSO₄). The solvent was removed *in vacuo* to yield 0.053 g (67%) of (−)-atrolactic acid. Recrystallization (cyclohexane) afforded atrolactic acid, mp 87–90°, $[\alpha]_D -14.4^\circ$ (*c* 1.29, 1 N NaOH), corresponding to 25.2% optical purity.²⁴

Apparent Dissociation Constants.—Approximately 0.02 mol of the HCl salts was dissolved in analytical grade MeOH (5 ml) and titrated against aq 0.115 N NaOH. The titration curves were recorded using a Radiometer automatic titrator Model TTT-1, outfitted with an autoburette and recorded (Radiometer-Copenhagen, the London Co., Westlake, Ohio). The titrations were carried out at 23° under constant conditions and the average values of 3 determinations are recorded in Table II.

Acknowledgment.—We wish to thank Dr. E. L. May, National Institutes of Health, for quantities of isomethadol and 3-deoxymethadone, and Dr. R. D. Rands of Mallinckrodt Pharmaceuticals for the supply of (−)-isomethadol.

(24) A. McKenzie and C. Clough, *J. Chem. Soc.*, **97**, 1016 (1910).

Homologs of Benzomorphan Derivatives. I

MIKIO TAKEDA AND HIROSHI KUGITA

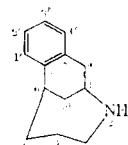
Research Laboratories, Tanabe Seiyaku Co. Ltd., Toda, Saitama, Japan

Received February 2, 1970

9-Hydroxy-3,7-dimethyl-1,2,4,5,6,7-hexahydro-2,7-methano-3H-3-benzazonine (XIX) and its 12-methyl derivatives (XV and XVI) were synthesized and tested for analgetic activity.

Seven-membered homologs of some piperidine derivatives are known to have analgetic activity.¹ Generally, they have weaker analgetic activity and fewer side effects than the corresponding piperidine derivatives. Since the benzomorphan derivatives have been extensively explored as analgetics, and no reports have appeared on their homologs, we undertook the study on 7-membered homologs of benzomorphan derivatives.

The synthesis of 9-methoxy-12-hydroxy-3,7,12-trimethyl-1,2,4,5,6,7-hexahydro-2,7-methano-3H-3-benzazonine (VII)² followed the procedure employed in the benzomorphan series³ (Scheme I). Thus, 3,4-dihydro-1-(3-dimethylaminopropyl)-7-methoxy-1-methyl-2(1-H)-naphthalenone (II), prepared from I and 3-dimethylaminopropyl chloride, was brominated to give the bromo ketone III hydrobromide. Cyclization of III·HBr with NH₄OH gave the keto methobromide IV

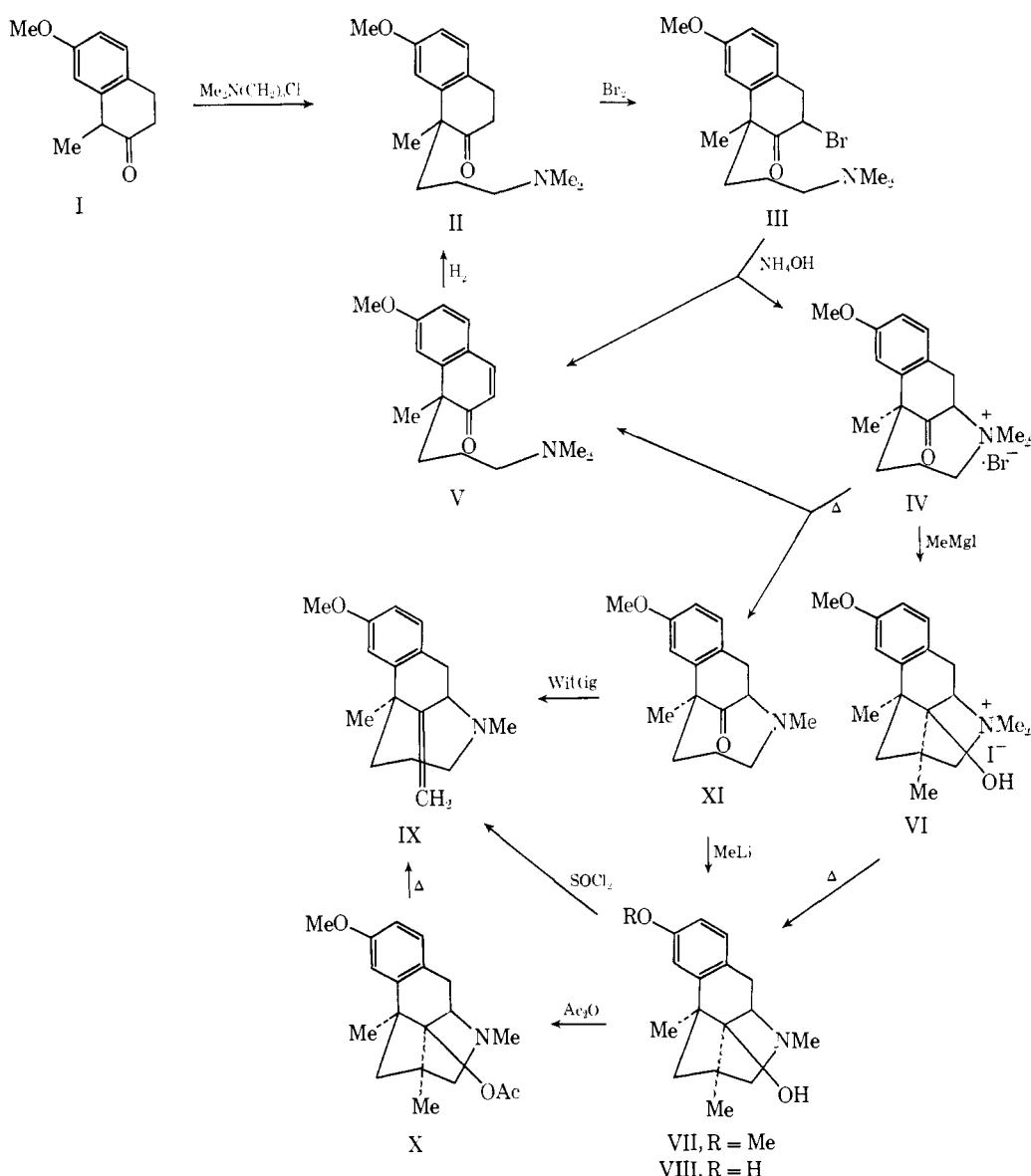

in up to 40% yield. The elimination product V accompanied this reaction and gave II on catalytic hydrogenation. Reaction of IV with MeMgI afforded the methylecarbinol derivative VI. Upon pyrolysis, VI gave the tertiary base VII together with the phenolic derivative VIII, which was methylated (CH₂N₂) to give VII.

The OH group of VII was assigned the β configuration on the basis of its ir spectrum. A strong band due to an intramolecular OH---N bonding was observed at 3340 cm⁻¹. (0.03 and 0.003 mol coued in CCl₄). An unexpected difficulty arose, however, when dehydration of VII to the 10-methylene derivative IX was attempted following the procedure successfully used for the benzomorphan analog.⁴ SOCl₂, POCl₃, and TsCl in the presence of pyridine failed to give IX. When treated with SOCl₂ in the absence of pyridine, VII gave a very small amount of IX. Pyrolysis of the acetoxy derivative X also gave IX in an unsatisfactory yield.

It was probable that the 10 α -hydroxy isomer of VII would be more easily dehydrated than VII. However, the reaction of XI, obtained by pyrolysis of IV, with MeLi gave a product identical with VII,⁵ and the 10 α -hydroxy isomer was not available for dehydrat-

(1) For instance, refer to the article by R. A. Hardy, Jr., and M. G. Howell in "Analgetics," G. deStevens, Ed., Academic Press, New York and London, 1965, p 206.

(2) For convenience, the term "homobenzomorphan" will be given to this series of derivatives in general. Numbering is analogous to that used for benzomorphan.



(3) (a) J. G. Murphy, J. H. Ager, and E. L. May, *J. Org. Chem.*, **25**, 1386 (1960); (b) E. L. May and H. Kugita, *ibid.*, **26**, 188 (1961).

(4) (a) S. Saito and E. L. May, *ibid.*, **27**, 1087 (1962); (b) H. Kugita and M. Takeda, *Chem. Pharm. Bull. (Tokyo)*, **12**, 1163 (1964).

(5) This result constitutes a major deviation from the benzomorphan series. In the latter, the reaction gives stereospecifically the α -OH derivative. See ref 3b.

SCHEME I

tion. Finally, IX was obtained in good yield by the reaction of XI with methylenetriphenylphosphorane.

Hydrogenation of IX (free base) with PtO_2 gave the 10α -Me derivative XII and the 10β -Me derivative XIII in 7.4 and 24.6% yields⁶ together with the secondary amine XIV (mixture of the diastereoisomers)⁷ (Scheme II). On the other hand, hydrogenation in the presence of 15% HCl in EtOH^{4a} gave two products, XIII (85%) and XII (12%), respectively. Nmr spectrum of XII showed the signal of the secondary Me at τ 9.1, while the β isomer XIII showed the signal at τ 8.7. This paralleled the reported observation in the benzomorphan series.⁸ O-Demethylation of XII and XIII with 48% HBr gave the respective phenolic derivatives XV and XVI.

Wolff-Kishner reduction of XI gave a mixture of the deoxo derivative XVII and the dihydronaphthalene

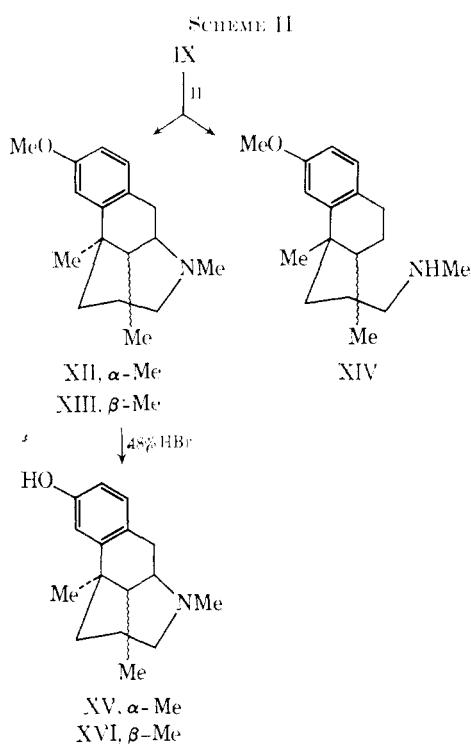
derivative XVIIIa⁹ (Scheme III). Methylation of XVIIIa gave XVIIIb, identical with the product obtained by exhaustive methylation of XVII. Demethylation of XVII afforded the phenolic derivative XIX.

CrO_3 oxidation¹⁰ of XVII gave the 9-oxo derivative XX. The methoperchlorate XXIb prepared from XX was also obtained from II by a series of reactions (Scheme IV), although the reaction of XXIV·HBr with NH_4OH ¹¹ gave the cyclized product in a very low yield according to the concurrent production of an elimination product XXV. This confirms the structure of XX and hence that of XVII.

These compounds were tested for analgetic activity by the hot plate method.¹² Analgetic activity of the

(6) Stereospecific formation of the α -Me derivative has been reported for the benzomorphan derivative. See ref 4a.

(7) Hydrogenation of the IX·HCl in EtOH also gave these three products. See the Experimental Section.


(8) S. E. Fullerton, E. L. May, and E. D. Becker, *J. Org. Chem.*, **27**, 2144 (1962).

(9) Concurrent elimination of the α -amino group during the Wolff-Kishner reduction of a 7-membered α -aminoketone has been reported. See N. J. Leonard and S. Gelfand, *J. Amer. Chem. Soc.*, **77**, 3269 (1955).

(10) S. Ohshiro, *Tetrahedron*, **10**, 175 (1950).

(11) (a) E. L. May and J. G. Murphy, *J. Org. Chem.*, **20**, 257 (1955); (b) H. Kugita, S. Saito, and E. L. May, *J. Med. Pharm. Chem.*, **6**, 357 (1962).

(12) N. B. Eddy and D. Leimbach, *J. Pharmacol. Exp. Ther.*, **107**, 385 (1953). The tests were conducted by Dr. G. Hayashi and associates in the Clinical Pharmacology Department.

10 β -methyl derivative XVI surpassed that of the 10 α -methyl derivative XV. Compound XIX was so toxic that the observed activity was equivocal (see Table I).

TABLE I
ANALGETIC ACTIVITY OF HOMOBENZOMORPHAN DERIVATIVES

Compd	ED ₅₀ , mg/kg sc	LD ₅₀ , mg/kg sc
VIII	33.8 (14.7-77.5)	225.3 (191.5-265.0)
XIX	4.1 (3.1-5.1)	15.2 (11.0-20.5)
XV	11.1 (7.4-16.6)	78.7 (59.4-104.6)
XVI	3.8 (2.9-4.9)	150.6 (128.0-177.1)
Morphine	4.5 (3.8-5.3)	407.0 (351.2-461.5)

Experimental Section

All melting points were determined in an open capillary tube and are uncorrected. Ir spectra were measured in Nujol and nmr spectra were taken in CDCl₃ (containing Me₄Si as internal standard) at 60 MHz, unless otherwise stated. When analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

3,4-Dihydro-1-(3-dimethylaminopropyl)-7-methoxy-1-methyl-2(1H)-naphthalenone (II)·HBr.—A mixture of NaNH₂ (3.4 g), I (15.7 g), and anhyd C₆H₆ (80 ml) was refluxed for 1 hr, a solution of 3-dimethylaminopropyl chloride (12.6 g) in anhyd C₆H₆ (35 ml) was added to the mixture, refluxed for 6 hr, and worked up in a usual manner^{3a} to give an oil (11.3 g), bp 155-158° (0.5 mm), which gave the hydrobromide (13.8 g, 49%), mp 159-163°, recrystallized from Me₂CO-EtOH, mp 164-166°. *Anal.* (C₁₇H₂₅BrNO₂) C, H, N.

3-Bromo-3,4-dihydro-1-(3-dimethylaminopropyl)-7-methoxy-1-methyl-2(1H)-naphthalenone (III)·HBr.—To a solution of II·HBr (1 g) in AcOH (7 ml), Br₂ (0.47 g) in AcOH (7 ml) was added at 55-65° (8 min) and stirred at the same temperature for 20 min. Et₂O was added to the mixture, filtered, and washed with Et₂O-Me₂CO, 1.11 g (91%), mp 138-141° dec, recrystallized from Me₂CO-MeOH, mp 147-149 dec. *Anal.* (C₁₇H₂₅BrNO₂) C, H, N.

9-Methoxy-12-oxo-3,7-dimethyl-1,2,4,5,6,7-hexahydro-2,7-methano-3H-3-benzazonine Methobromide (2'-Methoxy-2,6-

dimethyl-10-oxo-7,8-homobenzomorphan Methobromide¹³ (IV).—A mixture of III·HBr (35.5 g), ice-H₂O (180 ml), Et₂O (200 ml), and 28% NH₄OH (12 ml) was shaken in a separatory funnel. The organic layer was evaporated *in vacuo*, the residue was warmed with Me₂CO (100 ml), cooled, and filtered to give IV (11.5 g, 40%), mp 190-194°, recrystallized from EtOH, mp 193-194°; ir, 1715, 3475 cm⁻¹. *Anal.* (C₁₇H₂₄BrNO₂·0.5H₂O) C, H, N. The filtrate (Me₂CO) was evaporated, the residue was dissolved in H₂O, basified with NH₄OH, and extracted with Et₂O. The distilled free base (12 g), bp 160-166° (0.2 mm), gave 1-(3-dimethylaminopropyl)-7-methoxy-1-methyl-2(1H)-naphthalenone (V)·HBr (13 g, 45%), mp 128-135°, recrystallized from Me₂CO; mp 137-140°; ir, 1645 cm⁻¹; uv (EtOH), 248 nm (ϵ 18,300), 340 (11,240).^{3a} *Anal.* (C₁₇H₂₄BrNO₂) C, H, N. Hydrogenation of V·HBr (13 g) in EtOH (150 ml) with 10% Pd-C gave II·HBr (12.5 g, 88%), mp 159-162°.

2'-Methoxy-10-hydroxy-2,6,10-trimethyl-7,8-homobenzomorphan Methiodide (VI).—Grignard reaction of IV with MeMgI^{3b} gave VI (85%), mp 219-228°, recrystallized from EtOH, mp 237-239°. *Anal.* (C₁₈H₂₅INO₂) C, H, N.

2'-Methoxy-10-hydroxy-2,6,10-trimethyl-7,8-homobenzomorphan (VII)·HCl.—Pyrolysis of VI (1 g) in boiling 1-octanol (10 ml)^{3b} gave VII·HCl (440 mg, 56%), mp 247-249° dec (from Me₂CO-EtOH-Et₂O). *Anal.* (C₁₈H₂₅CINO₂) C, H, N. From the alkaline extract (NaOH) of the reaction mixture, 2',10-dihydroxy-2,6,10-trimethyl-7,8-homobenzomorphan (VIII) (22%) was obtained, mp 139-141° (from AcOEt-hexane); hydrochloride, mp 246-248° dec (from EtOH-Et₂O). *Anal.* (C₁₈H₂₅CINO₂) C, H, N. O-Methylation of VIII with CH₂N₂ in Et₂O (4 days at room temperature) gave VII as the hydrochloride (85%), identical with VII·HCl (mp and ir).

VIII from VII.—A solution of VII·HCl (950 mg) in 48% HBr (7 ml) was refluxed for 20 min, evaporated *in vacuo*, basified with NH₄OH, and filtered to give VIII, mp 137-140°, which gave the hydrochloride (700 mg, 82%), mp 244-246°.

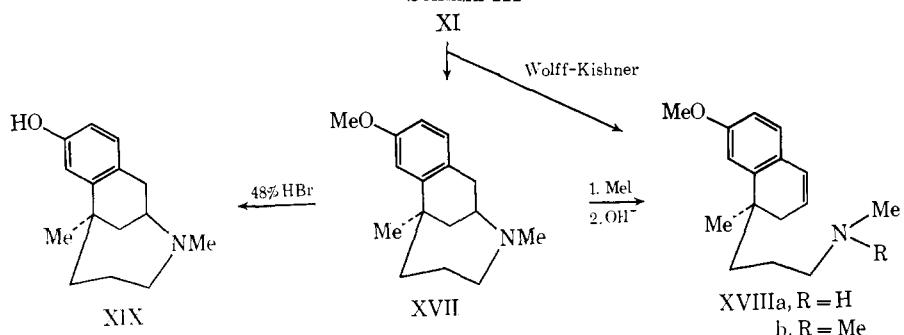
Dehydration of VII.—A mixture of VII·HCl (800 mg), CHCl₃ (15 ml), and SOCl₂ (608 mg) was allowed to stand at room temperature for 2 days, then warmed at 50° for 2 hr, evaporated, the residue was digested with Me₂CO, and filtered to give recovered VII·HCl (605 mg). Free base was recovered from the filtrate and converted into the picrate in EtOH to give 2'-methoxy-10-methylene-2,6-dimethyl-7,8-homobenzomorphan (IX) picrate (93 mg, 6%), mp 152-154° (from EtOH). *Anal.* (C₂₉H₂₄N₄O₈) C, H, N. The free base had ir (liq), 900 cm⁻¹; hydrochloride, mp 176-177° (from Me₂CO-EtOH-Et₂O). *Anal.* (C₂₉H₂₅CINO₂·0.5H₂O) C, H, N.

2'-Methoxy-10-acetoxy-2,6,10-trimethyl-7,8-homobenzomorphan (X)·HCl.—Acetylation of VII (1.3 g) with Ac₂O (15 ml) (2-hr reflux) gave X (1.43 g, 94%); bp 200-230° (0.2 mm) (bath temp); ir (liq) 1730 cm⁻¹; hydrochloride, mp 132-135° (from Me₂CO-Et₂O); ir, 1718, 3400 cm⁻¹. *Anal.* (C₂₉H₂₅CINO₂·H₂O) C, H, N; C: calcd, 61.36; found, 60.93.

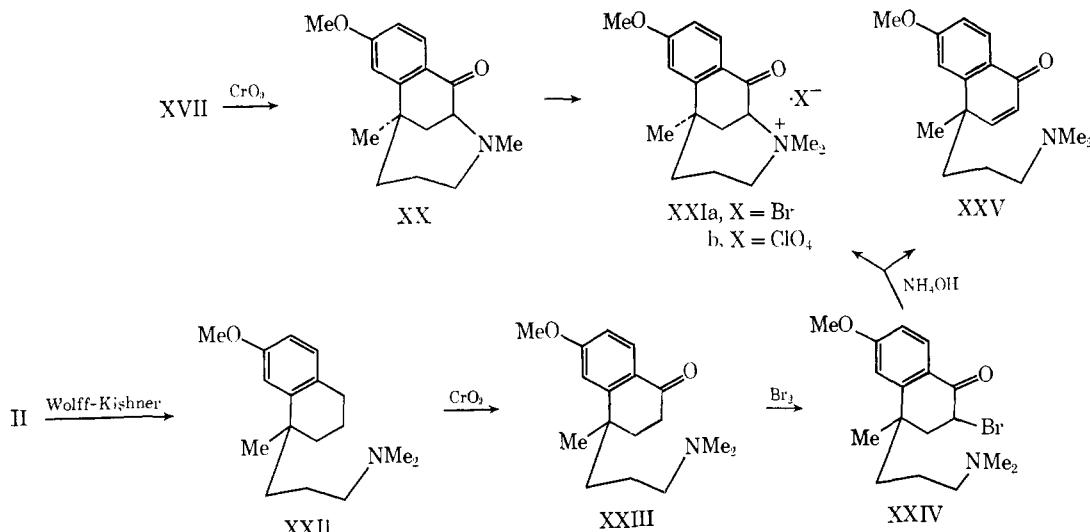
Pyrolysis of X.—X (2.59 g) was heated in a metal bath (310-330°, 6 min) under N₂, cooled, dissolved in Et₂O, extracted with 3% HCl, made alkaline (NH₄OH), and extracted with Et₂O. Free base from the extract was converted into the picrate in EtOH (795 mg, 20%), mp 152-154°.

Pyrolysis of IV.—IV (1.5 g) was heated in octanol for 7 min and worked up as usual.^{3a} The crude base was chromatographed on Al₂O₃ and eluted with C₆H₆ to give 2'-methoxy-10-oxo-2,6-dimethyl-7,8-homobenzomorphan (XI) (280 mg, 24.3%); mp 82-84° (from hexane); ir, 1710 cm⁻¹. *Anal.* (C₁₈H₂₄NO₂) C, H, N. The hydrochloride had mp 118-121° (from Me₂CO-EtOH-Et₂O); ir, 3400, 1720 cm⁻¹. *Anal.* (C₁₈H₂₄CINO₂·H₂O) C, H, N. C: calcd, 61.23; found, 60.82. V (350 mg, 30%) was obtained from the Et₂O eluate; hydrobromide, mp 136-138°.

Reaction of XI with MeLi.—Reaction of XI (2.59 g) with ethereal MeLi^{3b} gave VII·HCl (3.1 g, 93%), mp 246-248°.


Wittig Reaction of XI.—A solution of XI (2 g) in THF (18 ml) was added to a solution of methylenetriphenylphosphorane in THF prepared in the usual manner¹⁴ (from 5.64 g of Ph₃PMeBr), at 5°, stirred at room temperature for 16 hr, then refluxed for 2 hr, filtered, and the solvent was removed *in vacuo*.

The residue in CHCl₃ was extracted with 2% H₃PO₄, made alkaline with NH₄OH, extracted with Et₂O, dried, and evap-


(13) Naming based on "homobenzomorphan" will substitute those based on "3H-3-benzazonine" hereafter. See ref. 2.

(14) Two equivalents. Use of excess reagent gave a good result. We are indebted to Mr. M. Konda of this laboratory for this observation.

SCHEME III

SCHEME IV

orated. The residue was converted into a picrate in EtOH (3.7 g, 98%), mp 151–154°.

Hydrogenation of IX. a.—Free base IX (1.5 g) was hydrogenated with PtO₂ (200 mg) in EtOH (15 hr). The crude base in Et₂O was converted into its picrate and filtered to give 1.22 g, mp 131–140°. The base regenerated from the picrate was dissolved in Me₂CO and converted into the hydrochloride (520 mg), mp 112–116°, recrystallized from Me₂CO to give 2'-methoxy-2,6,10β-trimethyl-7,8-homobenzomorphan (XIII)·HCl (425 mg, 24.6%) had mp 118–121°; nmr (free base), τ 8.7 (d, 3, J = 7 Hz, 10β-CH₃). *Anal.* (C₁₇H₂₆ClNO·H₂O) C, H, N. The free base was recovered from the combined Me₂CO and converted into the picrate in EtOH, filtered, recrystallized from EtOH to give 2'-methoxy-2,6,10α-trimethyl-7,8-homobenzomorphan (XII)·picrate (210 mg, 7.4%): mp 148–152°; analytical sample, mp 153–155°; nmr (free base), τ 9.1 (d, 3, J = 7 Hz, 10α-CH₃). *Anal.* (C₂₃H₂₄N₄O₈) C, H, N. Free base was recovered from the mother liquor of the first picrate, converted into hydrochloride (0.65 g), recrystallized from AcOEt to give XIV·HCl (0.56 g, 32.4%): mp 127–130°; analytical sample, mp 130–132°.¹⁵ *Anal.* (C₁₅H₂₆ClNO) C, H, N. Reaction of XIV with TsCl gave an oily N-tosylate in quantitative yield.

b.—IX·HCl was hydrogenated likewise and worked up in a similar way to give XIII·HCl (15%), XII·picrate (20%), and XIV·HCl (33%). In another run XIII·HCl, XII·picrate, and XIV·HCl were obtained in 62.3%, 11%, and 7.2% yields, respectively.

c.—IX·HCl (1.4 g) was hydrogenated in EtOH (15 ml) in the presence of 15% HCl (30 ml). EtOH was evaporated and the residue was recrystallized from Me₂CO to give XIII·HCl (1.19 g, 85%), mp 118–121°. The base was recovered from the filtrate (Me₂CO) and converted into XII·picrate (340 mg, 12%), mp 150–152°.

(15) Nmr (free base) showed two secondary CH₃ signals at τ 8.66 and 9.05 respectively. Furthermore, each signal of NCH₃, OCH₃, and tertiary CH₃ was split into two peaks. These suggest XIV is a mixture of diastereoisomers.

2'-Hydroxy-2,6,10α-trimethyl-7,8-homobenzomorphan (XV). HBr.—O-Demethylation of XII with 48% HBr (20-min reflux) gave 56% of XV·HBr, mp 217–220° (from Me₂CO-Et₂O-Et₂O). *Anal.* (C₁₅H₂₄BrNO) C, H, N.

2'-Hydroxy-2,6,10β-trimethyl-7,8-homobenzomorphan (XVI). HBr, mp 209–212° (from Me₂CO-Et₂O-Et₂O), was obtained in 86.5% yield. *Anal.* (C₁₅H₂₄BrNO) C, H, N.

2'-Methoxy-2,6-dimethyl-7,8-homobenzomorphan (XVII). HCl.—A mixture of XI (4 g), KOH (4 g), NH₂NH₂·H₂O (4 ml), and diethyleneglycol (35 ml) was refluxed for 2 hr, the condenser was taken off and the mixture was heated to 175°, stirred for 30 min at that temperature, and cooled. H₂O and Et₂O were added, the organic phase was separated, washed with H₂O, dried, and evaporated. The crude base in Me₂CO gave XVII·HCl (0.67 g), mp 160–163°. The base recovered from the mother liquor (Me₂CO) was chromatographed on Al₂O₃ and eluted with C₆H₆-Et₂O (7:3) to give additional XVII (0.85 g as the hydrochloride, total yield, 35%), mp 163–165° (from Me₂CO-Et₂O-Et₂O), ir, 3400 cm⁻¹. *Anal.* (C₁₅H₂₄ClNO·H₂O) C, H, N. The methiodide was prepared in Me₂CO, mp 229–231° (from EtOH). *Anal.* (C₁₇H₂₆INO) C, H, N.

1,2-Dihydro-7-methoxy-1-methyl-1-(3-methylaminopropyl)naphthalene (XVIIIa). was obtained from the Et₂O eluate; hydrochloride, 1.1 g (25%), mp 105–108° (from Me₂CO), uv (MeOH), 272 m μ (ϵ 15,800). *Anal.* (C₁₆H₂₄ClNO) C, H, N.

1,2-Dihydro-1-(3-dimethylaminopropyl)-7-methoxy-1-methyl-naphthalene (XVIIIb). HCl. a.—XVIIIa was methylated with Me₂SO₄ in Et₂O (1-hr reflux): hydrochloride, mp 139–140° (from Me₂CO-Et₂O); uv (MeOH), 272 m μ (ϵ 15,500). *Anal.* (C₁₇H₂₆ClNO) C, H, N.

b.—The methiodide of XVII (250 mg) was refluxed with 10% NaOH (10 ml) for 20 min, extracted with Et₂O, dried, and evaporated. The free base (180 mg) gave XVIIIb·HCl (170 mg, 88%), mp 138–140° (from Me₂CO-Et₂O).

2'-Hydroxy-2,6-dimethyl-7,8-homobenzomorphan (XIX). HBr.

—O-Demethylation of XVII·HCl with 48% HBr was carried out in a usual manner: mp 245–247° (from EtOH); 87% yield.

Anal. (C₁₅H₂₄BrNO) C, H, N.

2'-Methoxy-2,6-dimethyl-9-oxo-7,8-homobenzomorphan (XX).—To a solution of XVII (306 mg), CrO_3 (165 mg) in 1 *N* H_2SO_4 (62 ml), was added 10 *N* H_2SO_4 (9 ml) at room temperature during 3 hr, and the mixture was allowed to stand for 20 hr. It was basified with NH_4OH , extracted with Et_2O , dried, and evaporated. The residue was recrystallized from hexane to give XX (165 mg, 52%); mp 118–119°; ir, 1660 cm^{-1} ; uv (EtOH), 227 $\text{m}\mu$ (ϵ 12,000), 278 (12,300).¹⁶ *Anal.* ($\text{C}_{16}\text{H}_{21}\text{NO}_2$) $\text{C},\text{H},\text{N}$. **Methobromide XXIa** was prepared in Me_2CO in a usual manner, mp 211–213°. *Anal.* ($\text{C}_{17}\text{H}_{23}\text{BrNO}_2$) $\text{C},\text{H},\text{N}$. **Methoperchlorate XXIb** was prepared from XXIa by addition of aq NaClO_4 , mp 217–219° (from Me_2O). *Anal.* ($\text{C}_{17}\text{H}_{23}\text{ClNO}_5$) $\text{C},\text{H},\text{N}$.

1-(3-Dimethylaminopropyl)-7-methoxy-1-methyl-1,2,3,4-tetrahydronaphthalene (XXII)·HCl.—A mixture of II (10.35 g), KOH (10 g), $\text{NH}_2\text{NH}_2\cdot\text{H}_2\text{O}$ (10 ml), and diethyleneglycol (90 ml) was heated at 175° for 3 hr and worked up in the usual manner to give XXII·HCl (5.4 g, 46%), mp 151–153° (from $\text{Me}_2\text{CO}-\text{EtOH}-\text{Et}_2\text{O}$). *Anal.* ($\text{C}_{17}\text{H}_{23}\text{ClNO}$) $\text{C},\text{H},\text{N}$.

3,4-Dihydro-4-(3-dimethylaminopropyl)-6-methoxy-4-methyl-1(2*H*)-naphthalenone (XXIII)·HBr.—XXII (from 5.38 g of the hydrochloride) was oxidized with CrO_3 in H_2SO_4 in the usual manner.¹⁰ Crude base was converted into the hydrobromide to give 3.29 g (54%); mp 137–141°; analytical sample, mp 142–144° ($\text{Me}_2\text{CO}-\text{Et}_2\text{O}$); ir, 1652 cm^{-1} ; uv (EtOH), 227 $\text{m}\mu$ (ϵ 14,100), 280 (15,700).¹⁰ *Anal.* ($\text{C}_{17}\text{H}_{23}\text{BrNO}_2$) $\text{C},\text{H},\text{N}$.

2-Bromo-3,4-dihydro-4-(3-dimethylaminopropyl)-6-methoxy-4-methyl-1(2*H*)-naphthalenone (XXIV)·HBr.—XXIII·HBr (2.35 g) was brominated in AcOH (30 min, at 55–65°) to give XXIV·HBr (2.41 g, 87.5%); mp 113–116°; analytical sample, mp 115–117° (from Me_2CO). *Anal.* ($\text{C}_{17}\text{H}_{23}\text{Br}_2\text{NO}_2\cdot 0.5\text{H}_2\text{O}$) $\text{C},\text{H},\text{N}$.

Cyclization of XXIV·HBr.—To a stirred suspension of XXIV·

HBr (2.4 g) in H_2O (8 ml, 5.6% NH_4OH 6 ml) was added with cooling. The mixture was stirred at room temperature for 2 hr and evaporated *in vacuo* to dryness below 40°. The residue was extracted with hot Me_2CO (100 ml in two portions) and filtered from inorganic material. Evaporation of the combined Me_2CO gave a crystalline residue (1.72 g, mp 120–123°),¹⁶ which was dissolved in H_2O , basified with NH_4OH , extracted with Et_2O , dried, and evaporated. Conversion of the residue into the salt gave **4-(3-dimethylaminopropyl)-6-methoxy-4-methyl-1(4*H*)-naphthalenone (XXV)·HBr** (1.67 g, 85%); mp 125–127° (from $\text{Me}_2\text{CO}-\text{Et}_2\text{O}$); ir, 1643 cm^{-1} ; uv (EtOH), 237 $\text{m}\mu$ (ϵ 15,500), 303 (ϵ 11,300); nmr (D_2O), olefinic protons, τ 3.55 (d, 1, J = 10 Hz) and τ 2.88 (d, 1, J = 10 Hz). *Anal.* ($\text{C}_{17}\text{H}_{23}\text{BrNO}_2\cdot 0.5\text{H}_2\text{O}$) $\text{C},\text{H},\text{N}$. The H_2O layer was evaporated *in vacuo* below 40°, the residue was dissolved in H_2O (1 ml), NaClO_4 (140 mg) was added, and the solution was cooled in a refrigerator overnight to give XXVb (10 mg, 0.5%); mp 216–218°. This was identical with the sample previously obtained from XX (mp, ir, and nra).

Acknowledgment.—The authors express their gratitude to Mr. M. Yamazaki, Director of Organic Chemistry Research Laboratory, Dr. N. Sugimoto, Technical Director, Dr. S. Sugasawa, Professor Emeritus of Tokyo University, and Dr. S. Saito for their encouragement and useful discussions. Thanks are also extended to the staff of the analytical section presided over by Dr. K. Kotera for elemental and spectral analyses.

¹⁶ This was found to be mostly XXV·HBr.

Preparation of Substituted Naphthylecyclohexane Derivatives and Related Compounds¹

HUMBERTO CARPIO, WENDELL H. ROOKS II, AND PIERRE CRABBE

Research Laboratories, Syntex, S.A., Mexico 10, D.F., Mexico

Received December 24, 1969

The synthesis of various naphthylecyclohexenone derivatives is reported. Methylation of 3-(6-methoxy-2-naphthyl)-2-cyclohexen-1-one (**2**) by various procedures allowed us to prepare the monomethyl (**5c**), dimethyl (**5d**), trimethyl (**6a**), and tetramethyl (**6b**) derivatives, the structure of which derives from their physical properties. Reduction of the tetrahydromethoxyphenylnaphthalene **8c** afforded a mixture of the α,β - and β,γ -unsaturated ketones (**11a**, **11b**). The new substances were submitted for a variety of bioassays. Compounds **4b**, **6a**, **8a**, **9b**, and **11b** were inactive when tested for oral estrogenic and oral antifertility activity.

Interest in seco-steroids generated by the potent antifertility activity of 2-methyl-3-ethyl-4-phenylecyclohex-4-ene carboxylic acid² lead us to prepare a series of phenylated cyclohexenones. Condensation reactions between aryl β -dialkylamino ketones and acetoacetic ester or similar compounds possessing an active CH_2 constitutes a convenient route for the synthesis of arylcyclohexen-1-one derivatives.³ This method has been employed to prepare new compounds in the phenylecyclohexenone,³ naphthylecyclohexenone,⁴ and phenylnaphthalenic⁵ series. In this work we wish to report

the synthesis of new related tricyclic keto derivatives as well as some of their methylated analogs.

Condensation between 2-(β -dimethylaminopropionyl)-6-methoxynaphthalene·HCl (**1b**), readily obtained¹ from 6-methoxy-2-acetyl-naphthalene (**1a**)^{6,7} and acetoacetic ester in a basic medium, afforded 3-(6-methoxy-2-naphthyl)-2-cyclohexen-1-one (**2**)⁴ as the major compound. Another substance formed during the reaction corresponded to $\text{C}_{31}\text{H}_{28}\text{O}_4$, as evidenced by the mass spectrum molecular ion (M^+ 462), and the elemental analysis. Structure **3** is proposed for this compound on the basis of its nmr spectrum which showed 12 aromatic protons and only one olefinic H, besides 2 aromatic methyl ether groupings (see Experimental Section).

Catalytic hydrogenation⁴ of **2** provided the substituted cyclohexanone **4a**, along with some of the corresponding alcohol (**4b**). LAH reduction of **4a** yielded a

(1) Contribution No. 370 from Syntex Institute of Organic Chemistry; for Contribution No. 369, see: I. T. Harrison, B. Lewis, P. Nelson, W. Rooks, A. Roszkowski, A. Tomoloni, and J. H. Fried, *J. Med. Chem.*, **13**, 203 (1970).

(2) J. McL. Morris and G. Van Wagenen, *Amer. J. Obstet. Gynecol.*, **96**, 804 (1966); see also: G. W. Duncan, *Excerpta Med. Found. Int. Congr. Ser.*, **No. 156**, 69 (1967).

(3) F. C. Novello, M. E. Christy, and J. M. Sprague, *J. Amer. Chem. Soc.*, **75**, 1330 (1953).

(4) F. C. Novello and M. E. Christy, *ibid.*, **75**, 5431 (1953).

(5) P. A. Robins and J. Walker, *J. Chem. Soc.*, 177 (1957).

(6) R. D. Haworth and G. Sheldrick, *ibid.*, 864 (1934).

(7) R. Robinson and H. N. Rydon, *ibid.*, 1394 (1939).